Abstract

In offshore pile engineering, the installation of jacked piles generates compaction effects within soil, thus further affecting previously installed adjacent piles. This study proposes a three-dimensional numerical model for pile group installation, soil consolidation, and loading analysis. Subsequently, the effect of pile spacing and pile length-to-diameter ratio on the deformation, internal forces, and vertical bearing capacity of adjacent piles are investigated. The results indicate that with an increase in pile center distance, the peak lateral displacement of the adjacent piles decreases, whereas the peak vertical displacement increases. As the pile length-to-diameter ratio increases, the peak vertical and lateral displacements of the adjacent piles are enhanced. In addition, the peak axial force of the adjacent piles initially decreases and then increases with the penetration depth of the subsequent pile, whereas the peak bending moment initially increases and then decreases. The vertical bearing capacity of the subsequent pile is significantly superior to that of the adjacent piles. Therefore, the effects of pile installation on adjacent piles should be included in pile engineering. The impact of the subsequent pile installation on the bearing capacity of adjacent piles can be significantly reduced by increasing the pile center distance and pile length-to-diameter ratio. The findings provide useful guidance for pile group engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.