Abstract

In this paper we present a performance study of multidimensional Fast Fourier Transforms (FFT) with GPU accelerators on modern hybrid architectures, as those expected for upcoming exascale systems. We assess and leverage features from traditional implementations of parallel FFTs and provide an algorithm that encompasses a wide range of their parameters, and adds novel developments such as FFT grid shrinking and batched transforms. Next, we create a bandwidth model to quantify the computational costs and analyze the well-known communication bottleneck for All-to-All and Point-to-Point MPI exchanges. Then, using a tuning methodology, we are able to accelerate the FFT computation and reduce the communication cost, achieving linear scalability on a large-scale system with GPU accelerators. Finally, our performance analysis is extended to show that carefully tuning the algorithm can further accelerate applications heavily relying on FFTs, such is the case of molecular dynamics software. Our experiments were performed on Summit and Spock supercomputers with IBM Power9 cores, over 3000 NVIDIA V-100 GPUs, and AMD MI-100 GPUs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.