Abstract

In this paper, the amplify and forward (AF) cooperative technique for one- and two-way relays has been implemented for underwater optical wireless communication (UOWC). UOWC suffers from scattering, absorption, and turbulence effects. The distance of communication between UOWC devices is typically within the range of 100 m. So relay-based UWOC has been proposed to improve the performance of device-to-device (D2D) based UWOC by increasing the effective link range. Performance analysis of unidirectional and bidirectional relay-based systems has been carried out in terms of outage probability and average symbol error probability (ASEP) for log-normal underwater fading channels. The analytical results have been validated by means of Monte Carlo simulations. Closed form expressions for ASEP have been obtained by using a mixture of gamma distributions, which was not possible using log-normal distributions. It has been observed that bidirectional relays, even though they have a better data rate than unidirectional relays, suffer in terms of outage probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.