Abstract

This paper investigates the performance of NOMA-based hybrid Satellite-Terrestrial relays system (HSTR) using the millimeter wave (mmWave) technology. Furthermore, the relays are equipped with multiple antennas and utilize the amplify and forward (AF) protocol to forward the satellite’s superimposed information to multiple destinations. Then, the rain coefficient is considered as the fading factor of the mmWave band to choose the best relay. We considered the shadowed-Rician fading and Nakagami-m fading for satellite links and terrestrial links respectively, and in addition, we evaluated the shadowing effect for satellite links with two modes of: frequent heavy shadowing (FHS) and average shadowing (AS). With these suggestions, the closed-form outage probability (OP) and approximate ergodic capacity (EC) are derived to evaluate the efficiency of the proposed system. Next contribution of the research is an asymptotic analysis for the OP, which is derived in order to gain additional insight into important system parameters. Finally, the theoretical derivation is validated through simulation results and analyzed the impact of significant parameters. These results demonstrate NOMA’s superiority to the traditional orthogonal multiple access (OMA) method in the proposed system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call