Abstract
This study seeks to investigate the various training functions with non-linear auto regressive eXogenous neural network (NARXNN) to forecasting the closing index of the stock market. An iterative approach strives to adjust the number of hidden neurons of a NARXNN model. This approach systematically constructs different NARXNN models from simple architecture to complex architecture with different training functions and finds the optimum NARXNN model. The effectiveness of the proposed approach was seen to be a step ahead of Bombay Stock Exchange (BSE100) closing stock index of the Indian stock market. This approach has identified optimum neuron counts in the hidden layer for every training function with NARXNN, which reduces neural network (NN) structure and training time and increases the convergence speed. The experimental result reveals that neuron counts in the hidden layer cannot be identified by some rule of thumb.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.