Abstract

A generalised method is derived to compute the error probabilities of singular value decomposition (SVD)-based receivers for a multiple-input multiple-output (MIMO) system with uncoded transmission. The method can be used for a wide class of flat fading environments, including independent and identically distributed (i.i.d.) and semi-correlated Rayleigh and i.i.d. Ricean channels. Although the method is applied to equal-power binary phase shift keying, it can easily be extended to higher-order M-ary phase shift keying (M-PSK) and M-ary quadrature amplitude modulation (M-QAM) signal constellations and adaptive ‘water-filling’ schemes. The error probability curves derived from closed-form formulas and simulations demonstrate very close agreement. The error performances of channel inversion, minimum mean square error and zero forcing receivers are compared with the SVD receiver for a single-user system. The impact of multiple users is considered by studying the performance of an adaptive MIMO SVD transmission scheme operating in a cellular environment. In particular, the effect of inter-cell interference on the performance of the scheme is quantified, modelling the interference as increased Gaussian noise. A number of cellular layouts are examined and the impact of the resulting singal-to-interference and noise ratio on the constellation sizes that can be supported, the BER and so on is considered. The primary metric used for our performance analysis is the error-free transmission rate, which is derived for our adaptive system. For the cellular scenarios considered, it can be found that the effect of interference is considerable and the performance of the adaptive MIMO SVD scheme is only marginally better than that provided by conventional diversity methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call