Abstract
In wireless communications, cooperative relaying is well-known to enhance the overall system performance, but implementation and cost constraints stand against its wide deployment. This paper investigates the performance of cooperative relays with and without multiple antennas under independent and identically distributed (i.i.d.) Weibull faded channels in a two-hop wireless network. We consider the Weibull fading channel model due to its flexibility in describing the radio propagation environment more than the classical Rayleigh model. Our study relies on applying selection combining (SC) along with threshold decode and forward (TDF) protocol at the cooperative relays as a good compromise between cost and performance. In addition, maximal ratio combining (MRC) is used at the destination. We derive analytical expressions for the end-to-end (E2E) error performance of the network under such scenario and provide simulation results to confirm the validity of the obtained analytical expressions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AEUE - International Journal of Electronics and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.