Abstract

There have been increases in the elderly population worldwide, and this has been accompanied by rapid growth in the health-care market, as there is an ongoing need to monitor the health of individuals. Wireless body area networks (WBANs) consist of wireless sensors attached on or inside the human body to monitor vital health-related problems, e.g., electrocardiograms (ECGs), electroencephalograms (EEGs), and electronystagmograms (ENGs). With WBANs, patients' vital signs are recorded by each sensor and sent to a coordinator. However, because of obstructions bythe human body, sensors cannot always send the data to the coordinator, requiring them to transmit at higher power. Therefore, we need to consider the lifetime of the sensors given their required transmit power. In the IEEE 802.15.6 standard, the transmission topology functions as a one-hop star plus one topology. In order to obtain a high throughput, we reduce the transmit power of the sensors and maintain equity for all sensors. We propose the multiple-hop transmission for WBANs based on the IEEE 802.15.6 carrier-sense multiple-access with collision avoidance (CSMA/CA) protocol. We calculate the throughput and variance of the transmit power by performing simulations, and we discuss the results obtained using the proposed theorems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.