Abstract

Magnetic induction (MI) is a promising solution for realizing wireless underground sensor networks (WUSNs) for many applications such as smart agriculture, surveillance, and environmental monitoring. In this study, a practical deployment model for a multihop MI-WUSN was developed, and its end-to-end performance was evaluated in terms of the signal-to-noise ratio, channel capacity, and bit error rate. We considered a multihop MI-WUSN and evaluated its end-to-end statistical performance for two scenarios pertaining to the hop state: (1) independent and identical distribution (IID) and (2) independent and non-identical distribution (INID). We derived analytical expressions for the performance evaluation and analysis of both scenarios by varying the number of hops and channel conditions. Our extensive numerical results show that asymptotic performance bounds can be obtained for the IID of hops. An analysis of the INID of hops yielded practical results that can facilitate decisive optimisation trade-offs and that can help reduce the system design overhead.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.