Abstract

Millimeter-wave (mmWave) and massive multi-input–multi-output (mMIMO) communications are the most key enabling technologies for next generation wireless networks to have large available spectrum and throughput. mMIMO is a promising technique for increasing the spectral efficiency of wireless networks, by deploying large antenna arrays at the base station (BS) and perform coherent transceiver processing. Implementation of mMIMO systems at mmWave frequencies resolve the issue of high path-loss by providing higher antenna gains. The motivation for this research work is that mmWave and mMIMO operations will be much more popular in 5G NR, considering the wide deployment of mMIMO in major frequency bands as per 3rd generation partnership project. In this paper, a downlink multi-user mMIMO (MU-mMIMO) hybrid beamforming communication system is designed with multiple independent data streams per user and accurate channel state information. It emphasizes the hybrid precoding at transmitter and combining at receiver of a mmWave MU-mMIMO hybrid beamforming system. Results of this research work give the tradeoff between multiple data streams per user and required number of BS antennas. It strongly recommends for higher number of parallel data streams per user in a mmWave MU-mMIMO systems to achieve higher order throughputs.

Highlights

  • The generation wireless communication systems including 5G NR use massive multi-input–multi-output (mMIMO) beamforming techniques to achieve higher SNRs and spatial multiplexing to enhance the data throughput at mmWave frequencies

  • To reduce the system cost, antenna elements can be grouped into subarrays and each T-R module is dedicated to an antenna subarray using an emerging technique for mmWave communications called ‘‘Hybrid Beamforming’’

  • The simulations were performed for a maximum of 256 9 16 MU-mMIMO system for four users and eight users with parameters shown in Tables 2 and 3

Read more

Summary

Introduction

The generation wireless communication systems including 5G NR use mMIMO beamforming techniques to achieve higher SNRs and spatial multiplexing to enhance the data throughput at mmWave frequencies. Hybrid beamforming designs are capable of transmitting data to multiple users using MU-MIMO with multiplexing gains and these MU-MIMO systems have high potential in mmWave communication networks. Hybrid transceivers consist of lesser RF chains compared to number of transmit antenna elements as they use analog beamformers in the RF domain, and digital beamformers in baseband domain. Hybrid beamforming design balances beamforming gains (to overcome path losses) and power consumption, hardware cost in mmWave mMIMO communication systems. It is possible to reduce the computational complexity in hybrid beamforming for mmWave communication systems with lesser number of analog RF chains (compared to number of users) and their performance is close to that of optimal (or fully) digital beamformers [1]. As per 3GPP standard, 5G wireless technologies use frequencies in FR2 band as shown in Table 1 to have short range communication and high data rates [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call