Abstract

The effect of cochannel interference on the performance of digital mobile radio systems in a Nakagami (1960) fading channel is studied. The performance of maximal ratio combining (MRC) diversity is analyzed in the presence of multiple equal-power cochannel interferers and additive white Gaussian noise. Closed-form expressions are derived for the average probability of error as well as outage probability of both coherent and noncoherent (differentially coherent) binary frequency-shift keying and binary phase-shift keying schemes in an environment with cochannel interference and noise. The results are expressed in terms of the confluent hypergeometric function of the second kind, a function that can be easily evaluated numerically. The analysis assumes an arbitrary number of independent and identically distributed Nakagami interferers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.