Abstract

Globally the rate of heart disease has increased drastically due to unhealthy eating habits and reduced physical activities. It has become one of the significant causes of death worldwide. As per the reports of the world health organization(WHO), 31% of all deaths worldwide are caused by cardiovascular diseases. This demands the development of a system capable of early detection of cardiovascular diseases at an affordable cost. With this as the objective, multiple machine learning algorithms have been selected to evaluate their performance in the early detection of cardiovascular diseases. This work utilizes available data sets of an individual’s vital parameters, demographic data, and exercise parameters for predicting cardiovascular diseases. An extensive evaluation is performed to identify the best-suited supervised machine learning classifier that could predict cardiovascular diseases using the available datasets. This research work details the nine different classification algorithms utilized for this analysis. For each algorithm, the F1-score, precision, recall, accuracy, and Area Under the Receiver Operating Characteristics (AUROC) values for each model have been determined and compared with the rest of the algorithms. The results show that random forest and gradient boosting models outperform others and demonstrate an F1-Score of 0.88 and an AUROC value of 0.92, respectively. This showcases that doctors could utilize this technique for the early identification of cardiovascular diseases. This will provide the opportunity to offer adequate medical treatments early, thus saving lives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.