Abstract
Many practical applications of neural networks require the identification of non‐linear deterministic systems or chaotic systems. In these cases the use of a network architecture known as locally recurrent neural network (LRNN) is often preferable in place of standard feedforward multi‐layer perceptron (MLP) networks, or of globally recurrent neural network. In this paper locally recurrent networks are used to simulate the behaviour of the Chua’s circuit that can be considered a paradigm for studying chaos. It is shown that such networks are able to identify the underlying link among the state variables of the Chua’s circuit. Moreover, they are able to behave like an autonomous Chua’s double scroll, showing a chaotic behaviour of the state variables obtainable through a suitable circuit elements choice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.