Abstract

The performance of Low-Density Parity-Check (LDPC)-coded Orthogonal Frequency Division Multiplexing (OFDM) is investigated over turbulence channels in underwater wireless optical communications (UWOC). The relation between the bit error ratio (BER) and parameters such as the scintillation coefficient, signal-to-noise ratio (SNR), length of LDPC code, and order of OFDM is quantified by simulation. Results show that while the OFDM with subcarrier quadrature amplitude modulation (QAM-OFDM) has slightly better anti-turbulence performance than the OFDM with subcarrier phase shift keying modulation (PSK-OFDM), the LDPC-coded QAM-OFDM has a much better performance than the QAM-OFDM and the LDPC-coded PSK-OFDM, and, at SNR = 12, it decreases the BER by four orders of magnitude compared to the 16QAM-OFDM system when the scintillation coefficient σξ2 = 0.05.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.