Abstract

Employing backscatter communication is a promising solution for Internet of Things (IoT). The novel large intelligent surface (LIS) concept can achieve reliable communication by establishing line-of-sight like channels. This letter thus considers an LIS-aided backscatter system to support high-reliable communications for IoT applications. In this letter, the symbol error probability (SEP) for both intelligent and random phase adjustments at the LIS reflectors is analytically investigated. In particular, we calculate the SEP based on the moment generating function approach and also provide tight SEP upper bounds for either fully correlated or mutually independent channels. Insightful observations of SEP outcomes reveal that having a large number of reflective elements on the LIS has a significantly positive impact on the SEP performance where high reliability can be achieved in moderate signal-to-noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.