Abstract

Lately, we see that Internet of things (IoT) is introduced in medical services for global connection among patients, sensors, and all nearby things. The principal purpose of this global connection is to provide context awareness for the purpose of bringing convenience to a patient’s life and more effectively implementing clinical processes. In health care, monitoring of biosignals of a patient has to be continuously performed while the patient moves inside and outside the hospital. Also, to monitor the accurate location and biosignals of the patient, appropriate mobility management is necessary to maintain connection between the patient and the hospital network. In this paper, a binding update scheme on PMIPv6, which reduces signal traffic during location updates by Virtual LMA (VLMA) on the top original Local Mobility Anchor (LMA) Domain, is proposed to reduce the total cost. If a Mobile Node (MN) moves to a Mobile Access Gateway (MAG)-located boundary of an adjacent LMA domain, the MN changes itself into a virtual mode, and this movement will be assumed to be a part of the VLMA domain. In the proposed scheme, MAGs eliminate global binding updates for MNs between LMA domains and significantly reduce the packet loss and latency by eliminating the handoff between LMAs. In conclusion, the performance analysis results show that the proposed scheme improves performance significantly versus PMIPv6 and HMIPv6 in terms of the binding update rate per user and average handoff latency.

Highlights

  • We see that Internet of things (IoT) is introduced in medical services for global connection among patients, sensors, and all nearby things

  • Assuming that the coverage of the Mobile Access Gateway (MAG) circle exceeds the boundary of the Mobile Node (MN), which is equal to the ratio μc Formula (19) [22]

  • Hierarchical Mobile IPv6 (HMIPv6), PMIPv6, and the proposed scheme are regional approaches that manage the movement of the MN in a given mobility domain to reduce the number of mobility signaling messages for MN

Read more

Summary

Introduction

We see that Internet of things (IoT) is introduced in medical services for global connection among patients, sensors, and all nearby things. Healthcare applications utilizing body sensor networks generate a vast amount of data. Cloud computing among with the Internet of Things (IoT) concept is a new trend for efficient managing and processing of sensor data online. A large number of data are outsourced to the cloud by data owners [1, 2].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call