Abstract

A very small amplitude (μV) of the electroencephalography (EEG) signal is infected by diverse artifacts. These artifacts have an effect on the distinctiveness of the signal because of which medical psychoanalysis and data retrieval is difficult. Therefore, EEG signals are initially preprocessed to eliminate the artifacts to produce signals that can serve as a base for further processing and analysis. Different filters are implemented to eliminate the artifacts present in the EEG signal. Recent research shows that window technique Finite Impulse Response (FIR) filter is usually used. In this paper, digital Infinite Impulse Response (IIR) filter and different Finite Impulse Response (FIR) window filters (Hanning, Hamming, Kaiser, Blackman) of various orders are implemented to eradicate the random noise added to EEG signals. Their performance analysis has been done in Matlab (R2016a) by calculating the mean square error, mean absolute error, signal to noise ratio, peak signal to noise ratio and cross-correlation. The results show that Kaiser Window based finite impulse response filter outperforms in removing the noise from the electroencephalogram signal. This research focuses on eradicating random noise in electroencephalogram signals but this approach will be extended to a different source of electroencephalogram contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.