Abstract
Despite a large amount of publications on Fuzzy Mathematical Morphology, little effort was done on systematic evaluation of the performance of this technique. The goal of this work is to compare the robustness against noise of Fuzzy and non Fuzzy Morphological operators when applied to noisy images. Magnetic Resonance Images (MRI) of the brain are a kind of images containing some characteristics that make fuzzy operators an interesting choice, because of their intrinsic noise and imprecision. The robustness was evaluated as the degree in which the results of the operators are not affected by artificial noise in the images. In the analysis we compared different implementation of Fuzzy Mathematical Morphology, and observed that in most of the cases they show higher robustness against noise than the classical morphological operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Latin American Applied Research - An international journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.