Abstract

This paper presents the performance analysis of six-pulse line commutated converter (LCC) and advanced control strategy Fuzzy Logic Control (FLC) for speed control of a dc motor. The speed of motor is maintained at the desired reference value by adjusting the value of armature current. The armature current is varied by controlling the firing angle of LCC. The desired value of reference current is obtained from the corresponding speed value and is fed to the controller. The controller takes the measured and reference value of armature current as an input. The output of the controller is firing angle. To maintain the motor speed at the desired value two controllers the FLC and the conventional Proportional Integral Derivative (PID) controllers are employed and their performance is compared. The proposed controllers and power system is implemented in Control System and SimPowerSystem toolbox of MATLAB. Results of Computer simulation are described and debated together with a comparative analysis of the different control schemes. The simulation results show that the proposed FLC has tracking ability with better steady state error and transient response than conventional PID controller. Moreover, the deleterious effects of converter on input current and power factor are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call