Abstract

In this paper, we analyze the performance of the full-duplex relay system, wherein two terminal nodes operate in the half-duplex mode and the relay node with decode-and-forward scheme operates in the full-duplex mode. We consider the replenishes energy from radio frequency (RF) for the source and the relay nodes through the power beacon (PB) combine with the case of imperfect self-interference cancellation (SIC) at the full-duplex relay. To increase the collected energy for the source and the relay, on the other hand decreasing the complexity for the high power amplifier at the PB, we assume that the PB has multiple antennas. Using theoretical analysis, we obtain the closed-form of the exact outage probability of the system over Nakagami-m fading channels. Furthermore, the exact expression for the symbol error probability of the system is derived to evaluate the system performance with different modulation schemes. Based on this analysis, the impact of the antenna numbers, m parameters, the time duration for harvesting and the residual self-interference are considered. The Monte-Carlo simulations are used to demonstrate the correctness of numerical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.