Abstract

Lightwave system using wavelength division multiplexing (WDM) meets the demand over larger data rates, higher capacity, and improved network throughput. In this paper, we discuss the multi-channel WDM system’s performance using a single-stage erbium-doped fiber amplifier (EDFA) and compares BER, Q-factor, and eye height for both co-channel and counter-channel propagation. The proposed WDM system identifies the optimal EDFA length, pump power, and input power to achieve a high Q-factor, proper eye-opening characteristic, and low bit error rate (BER). The proposed WDM system is simulated using OptiSystem, and results are compared for 16, 32, and 64-channel WDM systems. The proposed system's performance is evaluated by achieving low BER, high Q-factor, and higher gain with excellent eye characteristics, which enhance the signal quality at the receiver end. In this work, a 64-channel WDM system achieves min BER in the range of 10–15–10–19 in co-channel propagation and 10–16 from counter-channel propagation. Furthermore, the proposed system achieves a low noise figure (NF) around < 9 dB and flatten gain of 39.77 ± 0.7 dB from 1530 to 1562 nm operating bandwidth for 16, 32 and 64-channel WDM system using single-stage EDFA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call