Abstract
With nowadays popularity of large-scale parallel computers, Multiprocessors System-on-Chip (MP-SoCs), multicomputers, cluster computers and peer-to-peer communication networks, fault-tolerant routing becomes an important issue in developing these systems. Fault-tolerant routing algorithms in such systems aim at providing continuous operations in the presence of one or more failures by allowing the graceful degradation of system. The Software-Based fault-tolerant routing scheme has been suggested as an efficient routing algorithm to preserve both communication performance and fault-tolerant demands in parallel computer systems. To study network performance, a number of different analytical models for fault-free routing algorithms have been proposed in the past literature. However, there has not been reported any similar analytical model of fault-tolerant routing in the presence of faulty components. This paper presents a new analytical modeling approach for determining the effects of failures in wormhole-switched 2-D tori using the fault-tolerant Software-Based scheme. More specifically, we describe a general model to derive mathematical expressions to investigate the performance behavior of routing algorithms confronting convex (|-shaped, ?-shaped) or concave (U-shaped, +-shaped, T-shaped, H-shaped) faulty regions. The model is validated through comprehensive simulation experiments for different types of failures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.