Abstract

Erosion of compressor blades due to operation in dusty environments is a serious problem for the manufacturers and users of gas turbine engines, because of significant degradations in performance. This study has been devoted to estimating the change of performance parameters of an axial compressor stage due to erosive deterioration. The influence of erosion considered as consequences of a reduction of rotor blade airfoils, and an increase of tip clearance. The results of this study obtained using the CFD code “NUMECA Fine/Turbo”. This CFD code is a steady, quasi-three-dimensional Reynolds Averaged Navier-Stokes (RANS) solver. A Spalart-Allmaras turbulence model is used. The compressor stage parameters presented for three rotational speeds. Proposed a new approach to consider the changes of geometric parameters of blades due to erosion. Presented an analysis of the effect of erosion and its individual consequences on the pressure ratio, isentropic efficiency and stability margin of the stage. The obtained results verified using an existing experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call