Abstract

The main target of this research work is to present the performance analysis of Dual-Cell High Speed Downlink Packet Access (DC-HSDPA) plus Multiple Input Multiple Output (MIMO) supported by sophisticated Power Control (PC) with Long Term Evolution (LTE) integrated with Adaptive MIMO Switching (AMS). A simple approach of power allocation for DC-HSDPA in the downlink direction is presented in this paper, in which power resources are dynamically allocated to the users, irrespective of the number of code utilizations. This paper also highlights the impact of efficient power allocation in DC-HSDPA compared to conventional DC-HSDPA without any PC. In addition to different Intersite Distance (ISD), the impact of serving variable numbers of users per Transmission Time Interval (TTI) was also analyzed in terms of average cell throughput, relative throughput gain, and user’s probability of no data transfer in a macrocellular environment.Simulation results revealed that at 500 m ISD LTE exhibits better performance with AMS compared to spatial multiplexing, and it offered an average cell throughput of around 47 Mbps with nearly 5.5% user’s probability of no data transfer. It was learned that DC-HSDPA performance improves by adopting a PC scheme in the Downlink (DL) direction. At small ISD, DC-HSDPA with MIMO provides an average cell throughput of around 19.5 and 13.7 Mbps with and without PC, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call