Abstract

In resource limited, large scale sensor networks, cooperative communication over multiple hops offers opportunities to save power: intermediate nodes between source and destination act as cooperative relays. In order to exploit spatial diversity, protocols coupled with space-time coding strategies are proposed herein and analyzed for distributed cooperative communication. In contrast to prior work, multi-hop (versus two-hop) schemes are developed and analyzed for amplify-and forward type of communication protocols. First, the Alamouti based two-hop scheme proposed by Hua et al and analyzed by Jing & Hassibi is generalized to an arbitrary number of hops L, and a general approximation for the pairwise error probability (PEP) at high SNR is obtained. This expression is used to provide a close approximation to the achievable diversity gain of the scheme. It is further shown that the diversity decreases with L, for large, but finite signal-to-noise ratio (SNR). This motivates the subsequent development of new distributed multihop protocols to mitigate the diversity losses and, hence, yield improved performance. This work presents two such strategies as well as their diversity characterization, which are analyzed for the specific case of L = 3 hops and shown to exhibit improved performance at high SNR. These schemes are based on the structure of the rate-half codes proposed by Tarokh and the square-matrix embeddable codes of Tirkkonen & Hottinen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.