Abstract

Discrete Fourier transform-spread generalized multi-carrier (DFT-S-GMC) based single carrier-frequency division multiple access (SC-FDMA) scheme is a promising solution for uplink transmission of broadband wireless communication. In this paper, the impact of non-perfect orthogonal prototype filter to the performance of the DFT-S-GMC system is discussed. Single sub-band frequency-domain equalization (FDE) method is presented and the performance loss caused by FDE-tone discarding is analyzed. Moreover, the post-processing signal to interference plus noise ratio (SINR) of DFT-S-GMC receiver over multi-path channel is addressed. The theoretical analysis illustrates that the non-perfect orthogonal prototype filter results in inter-symbol interference (ISI) and inter-sub-band interference (IBI), and the variance of the ISI is still less than 1e−4 and much larger than that of IBI. By designing proper system parameters, the reconstruction error due to FDE-tones discarding can be controlled under −40 dB; the post-processing SINR of the DFT-S-GMC receiver with minimum mean square error (MMSE) equalization is higher than that with zero forcing (ZF) equalization. The theoretical performances are verified by extensive simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call