Abstract

In this paper, we propose a general framework to investigate cooperative non-orthogonal multiple access (NOMA) using two-stage relay selection (TSRS) in spatially random relaying networks. More specifically, we consider both amplify-and-forward and decode-and-forward protocols and compare the performance between them. From practical consideration, we adopt a stochastic geometry-based model and assume that the spatial topology of relays is modeled by using homogeneous Poisson point process (PPP). Based on such a setting, an effective coverage area of the relays modeled by using homogeneous PPP in cooperative NOMA systems is developed and performance comparison between TSRS and the conventional max–min RS scheme is also presented. According to the locations of the NOMA users, we develop the complete strategies for calculating the effective coverage area of the relays. Furthermore, in the high signal-to-noise ratio regime, asymptotic expressions are provided to show that the outage probability tends to a constant which is only related to the density of homogeneous PPP and the effective coverage area of the relays. For a given outage probability, we reveal the relationship between the shortest and longest radii of the effective district of the relays. Finally, Monte Carlo simulations are provided to verify the accuracy of the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.