Abstract

AbstractIn this paper, the contention performance of message- and code-based initial ranging is investigated for two different scenarios or cases when idle mode is activated at the mobile stations (MSs). First scenario assumes a chosen set of MSs to follow mobility waypoint between the base stations (BSs), while other MSs remain stationary. Second scenario (worst case) presumes that all the MSs served by the BSs follow either mobility waypoint or random waypoint between the BSs. Under these scenarios, during periodic location update, MSs undergo contention-based network re-entry process. When more than one MSs undergo location update, it causes high contention amid MSs. Hence, this paper investigates the contention performance of message- and code-based ranging during periodic network re-entry. Simulations validate that the MSs in worst-case scenario with code ranging perform better in terms of idle-mode energy consumption (57.97 %) and percentage of time in idle mode (68.11 %) than message ranging under Rayleigh fading channel.KeywordsMedium access controlIdle modeContention ranging

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.