Abstract

A significant portion of Iranian flat breads are produced in semi-industrial, indirect-heating ovens. Therefore, an efficient oven design and a proper selection of operating conditions are crucial to improve the product quality and reduce energy consumption. In the present study, a mathematical model is developed to simulate a semi-industrial, indirect-heating, continuous oven performance during contact baking of an Iranian flat bread, referred to as Taftoon. Individual modes of heat transfer are considered among various components of the baking system to estimate the system performance and the bread quality in terms of design and operating conditions. The predictions of this model are in good agreement with the experimental data. Numerical results indicate that conduction is the primary heat transfer mechanism. Furthermore, the effects of dough thickness, conveyer speed, and input air velocity on the quality of the bread are studied and appropriate ranges for the parameters are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.