Abstract
Jittering, a small delay imposed before forwarding a packet, has been used in wireless communication for many purposes. For instance, AODV routing protocol uses jitter mechanism to prevent simultaneous transmission of nodes in route discovery stage, which reduces collisions. Recently, many works have studied possibility of using different random variables with different parameters for jittering rather than a simple uniform random variable. It has been shown that other random variables including Exponential and Pareto distributions can also be beneficial. In this paper, we first propose a discrete time Markov model to capture the behavior of nodes in route discovery stage when they use exponential distribution for their jitter mechanism. With this model, we obtain the number of collisions and route discovery time mathematically, which is proven to be accurate by simulation. We also use our model to find the optimum value of $$\lambda$$ , exponential distribution parameter, which somehow minimize the probability of collision and route discovery time. We further obtain some equations that give us the relation between parameters of different jitter mechanisms such that their route discovery stage takes almost equal time, which is used for fair comparison. Finally, we show that the exponential jitter mechanism using our optimum $$\lambda$$ outperform other jitter mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.