Abstract

We study the exact average output signal-to-noise ratio (SNR) and symbol error rate (SER) of M-ary phaseshift-keying (PSK) signals with coherent equal gain combining reception. The analysis assumes independent Nakagami-m (1960) fading paths, which are not necessarily identically distributed. On one hand, we use geometric summations to obtain closed-form expressions for the average output SNR over diversity paths with an exponentially decaying power delay profile. On the other hand, capitalizing on an alternative integral representation of the conditional SER along with Gauss-Hermite quadrature integration, we derive an average SER expression in the form of a single finite-range integral and an integrand composed of tabulated functions. We also present a simpler but approximate approach for the closed-form evaluation of the SER of these signals over independent identically distributed Nakagami-m fading paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.