Abstract

An effect of multipath fading on the performance of a cellular code-division multiple-access (CDMA) system is analyzed in this paper. A wide-sense stationary uncorrelated scattering (WSSUS) channel model and the coherent binary phase-shift keying (BPSK) with asynchronous direct-sequence (DS) spreading signal are assumed in the analysis. The average error probability for both the forward link and reverse link of a cellular CDMA system over a frequency-selective fading channel using a conventional correlation-type receiver and RAKE receiver are derived. The impact of imperfect power control and channel capacity of a cellular CDMA system is also investigated. The closed forms of average error probability derived in the paper can save a lot of computation time to analyze the performance and channel capacity of a cellular CDMA system. The analytical results show that the performance and maximum transmission rate of cellular CDMA systems degrade with an increase in the number of simultaneous users and the number of interfering cells. The signal-to-interface ratio (SIR) for the reverse link derived in this paper can directly describe the interrelationships among a number of paths, number of users, number of interfering cells, fading factors, and maximum variation of a received unfaded signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call