Abstract

Cellular Automata (CA) are of interest in several research areas and there are many available serial implementations of CA. However, there are relatively few studies analyzing in detail High Performance Computing (HPC) implementations of CA which allow research on large systems. Here, we present a parallel implementation of a CA with distributed memory based on MPI. As a first step to insure fast performance, we study several possible serial implementations of the CA. The simulations are performed in three infrastructures, comparing two different microarchitectures. The parallel code is tested with both Strong and Weak scaling, and we obtain parallel efficiencies of ∼ 75%–85%, for 64 cores, comparable to efficiencies for other mature parallel codes in similar architectures. We report communication time and multiple hardware counters, which reveal that performance losses are related to cache references with misses, branches and memory access.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.