Abstract

We present an efficient fiber optic SPR sensor consisting of bimetallic layers of silver (Ag) and gold (Au) in coordination with zinc oxide (ZnO) for refractive-index sensing in spectral mode. The performance of the sensor is explored in terms of electric field intensity, sensitivity, and the figure of merit theoretically as well as experimentally. Four kinds of sensors with layers of Ag/ZnO, Au/ZnO, Au/Ag/ZnO, and Ag/Au/ZnO over an unclad core of the fiber are studied. For simulation, two-dimensional multilayer matrix method along with geometrical optics is used. It is found that the sensor having layers of Ag/Au/ZnO with optimized thicknesses possesses maximum electric field intensity at the interface, large shift in the resonance wavelength, sharp SPR dip, and high value of the figure of merit. In addition, the additional layers of Au and ZnO can also be used for the tuning of resonance wavelength in the visible region of the electromagnetic spectrum and for the protection of Ag layer from oxidation and; hence, can improve the durability of the sensor. Further, ZnO layer can also be used to sense some of the gases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.