Abstract

In this paper Time-varying Auto regressive model (TVAR) based approach for instantaneous frequency (IF) estimation of the nonstationary signal is presented. Time-varying parameters are expressed as a linear combination of constants multiplied by basis functions. Then, the time-varying frequencies are extracted from the time-varying parameters by calculating the angles of the estimation error filter polynomial roots. Since there were many existing basis functions that could be used as basis for the TVAR parameter expansion, one might be interested in knowing how to choose them and what difference they may cause. The performance of different basis functions in TVAR modeling approach is tested with synthetic signals. Our objective is to find an efficient basis for all testing signals in the sense that, for a small number of basis (or) expansion dimension, the basis yields the least error in frequency. In this paper, the optimal basis function of TVAR Model for the instantaneous frequency (IF) estimation of the test signals was obtained by comparing IF estimation precise and anti-noise performance of several types basis functions through simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.