Abstract

With civil aviation growing at around 4.7% per annum, the environmental footprint of aviation is increasing. Moreover, the use of kerosene as a fuel accelerates the depletion of non-renewable fossil fuels and increases global warming. Hence, the aviation industry has to come up with new technologies to reduce its environmental impact and make aviation more sustainable. An electrically assisted propulsion system can combine the benefits of an electrical power source with a conventional turbofan engine. However, the additional electrical system increases the weight of the aircraft and complexity of the power management system. The objective of this research is to analyze the effect of an assistive electrical system on the performance of a turbofan engine for an A320 class aircraft on a short-range mission. The developed simulation model consists of an aircraft performance model combined with a propulsion model. The power management strategy is integrated within the simulation model. With the proposed propulsion system and power management strategy, the electrically assisted propulsion system would be able to reduce fuel burn, total energy consumption, and emissions for short-range missions of around 1000 km.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.