Abstract

Machine tools subjected to high demands regarding productivity and accuracy are faced with the challenge that thermal losses influencing the accuracy negatively. Due to high requirements regarding thermal stability of precision related machine tool components, the focused linear direct drives (LDD) must be tempered by active cooling systems. In machine tools, a sufficient cooling capacity is available, but the cooling is insufficiently adjusted to the process and the individual demand of the heat-inducing as well as precision related components. With the intention to achieve a demand-oriented cooling, the use of thermoelectricity in machine tools is one research objective at the Institute for Machine Tools and Factory Management (IWF). Inspired by the concept of thermoelectric self-cooling (TSC)-systems for electronic devices, an Adaptive Cooling (AC)-system with thermoelectric generators (TEG) for LDD in machine tools is developed and experimentally investigated. In order to enhance the performance of AC-systems , in this research a reduction of the global thermal resistance is focused. A promising approach to achieve this goal is the division of the induced heat flow into a primary and a secondary heat path. For a model-based performance analysis of this approach, a system simulation is presented. To acquire experimental data for model validation, a test bench of the AC-system with primary as well as primary and secondary heat path is put into operation. The comparison of simulative and experimental determined data indicates a predominantly high model prediction accuracy. As a result, the implementation of a secondary heat path enables a reduction of the temperature on the upper surface of the heat source by 24.6% and thus a decrease of the global thermal resistance by 38.1%. Compared to the initial state of the AC-system only with primary heat path, the achieved thermal stability in the precision related machine tool component as well as the self-starting capability is improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.