Abstract

Photoplethysmography (PPG) signal provide advanced and simple ways for estimating heart rate (HR) information as an unremarkable system on wearable devices. In this paper, we analyze the performance of adaptive filter and machine learning (ML) algorithms for estimation of HR during physical activity. Three cascades recursive least square (RLS) and cascades normalized least mean square (NLMS) adaptive filters are developed and combined using convex combination scheme to reduce motion artifacts (MA) from the recorded PPG signal. Then, ML based spectral tracking algorithms is applied, to locate the spectral peak corresponding to HR. Four different supervised ML algorithms (Support Vector Machine, Decision Tree, K- Nearest Neighbor and Logistic Regression) are examined to track the spectral peaks and the decision tree out performs all three algorithms with an accuracy of 98.96%. Experimental results on the PPG datasets including 23 subjects used in the 2015 IEEE signal processing cup showed that the proposed approach has a very good performance by achieving an average absolute error (AAE) of 1.98 beats per minute (BPM) and the personal correlation coefficient of 0.9899. AAE result proved that the proposed method provides accurate HR estimation performance in comparison with other existing works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.