Abstract

This paper analyzes the performance of clustered decode-and-forward multi-hop relaying (CDFMR) wireless Rayleigh fading networks, and sheds light on their design principles for energy and spectral efficiency. The focus is on a general performance analysis (over all SNR range) of heterogeneous wireless networks with possibly different numbers of relays in clusters of various separations. For clustered multi-hop relaying systems, hop-by-hop routing is known as an efficient decentralized routing algorithm which selects the best relay node in each hop using local channel state information. In this article, we combine hop-by-hop routing and cooperative diversity in CDFMR systems, and we derive (i) a closed-form expression for the probability distribution of the end-to-end SNR at the destination node; (ii) the system symbol error rate (SER) performance for a wide class of modulation schemes; and (iii) exact analytical expressions for the system ergodic capacity, the outage probability and the achievable probability of the SNR (power) gain. We also provide simple analytical asymptotic expressions for SER and the outage probability in high SNR regime. Numerical results are provided to validate the correctness of the presented analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call