Abstract

Abstract A performance assessment was conducted for a solar–biogas hybrid micro gas turbine integrated with a solar power tower technology. The considered system is a solar central receiver integrated with a micro gas turbine hybrid with biogas fuel as a backup. The Brayton cycle is designed to receive a dual integrated heat source input that works alternatively to keep the heat input to the system continuous. The study considered several key performance parameters including meteorological condition effects, recuperator existence and effectiveness, solar share, and gas turbine components performance. This study shows a significant reduction in CO2 emissions due to the utilization and hybridization of the renewable energies, solar, and biogas. The study reveals that the solar–biogas hybrid micro gas turbine for 100-kW power production has a CO2 emission less than a conventional fossil fuel gas turbine. Finally, the study shows that the method of power generation hybridization for solar and biogas gas turbines is a promising technique that leads to fuel-savings and lower CO2 emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call