Abstract

Novel reconfigurable Intelligent Surfaces (RISs) area technology can improve the communication performance by changing the wireless transmission environment. Introducing RIS technology into Vehicle-to-Vehicle (V2V) communication environments can enhance the communication reliability by creating Line-of-Sight (LoS) communication links, thereby effectively improving the communication performance. However, in RIS-assisted V2V large-scale communication networks, the stochasticity of network nodes and random interference can impact performance. In this article, we examine the outage communication transmission performance of an RIS-assisted V2V communication network. We select the signal transmission mode based on the obstacle presence between vehicles and use the stochastic geometry theory to calculate the probabilities of the two modes: direct mode and RIS-assisted mode. By deriving the communication distance distribution and the aggregate interference distribution, we evaluate V2V communication in the direct mode to assess its transmission performance in two scenarios and obtain the overall outage probability. The numerical results demonstrate a better performance in RIS-assisted V2V networks, with an improved optimal phase shift scheme over that of the original V2V network. Monte Carlo simulation validated our analytical findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call