Abstract

The growing use of clusters in diverse applications, many of which have real-time constraints, requires quality-of-service (QoS) support from the underlying cluster interconnect. All prior studies on QoS-aware cluster routers/networks have used simulation for performance evaluation. In this paper, we present an analytical model for a wormhole-switched router with QoS provisioning. In particular, the model captures message blocking due to wormhole switching in a pipelined router, and bandwidth sharing due to a rate-based scheduling mechanism, called VirtualClock. Then we extend the model to a hypercube-style cluster network. Average message latency for different traffic classes and deadline missing probability for real-time applications are computed using the model. We evaluate a 16-port router and hypercubes of different dimensions with a mixed workload of real-time and best-effort (BE) traffic. Comparison with the simulation results shows that the single router and the network models are quite accurate in providing the performance estimates, and thus can be used as efficient design tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.