Abstract

As a result of growing energy demand, shortage of fossil fuel resources, climate change, and environmental protection, the need for renewable energy sources has been growing rapidly. However, there is an urgent need to cope with intermittency and fluctuation of renewable energies. Various energy storage systems are considered as appropriate solutions to the above-mentioned problem. In the present manuscript, a novel compressed carbon dioxide energy storage system was proposed. Furthermore, an extra thermal energy storage with Therminol VP-1 as a working fluid, coupled with Parabolic Trough Collector (PTC), was added to the system. This integration is conducive to rising the inlet temperature of turbines and reducing the work load that should be done by the compressors. In the present study, a method based on software product including Engineering Equation Solver (EES) for determining thermodynamic characters per component and System Advisor Model (SAM) was employed to model the solar field for a desired location. Energy and exergy analyses were conducted to evaluate the whole cycle performance during charging and discharging periods. In this study, the city of Kerman located in the south-eastern part of Iran, with Direct Normal Incidence (DNI) of 950 , was selected for the present modeling. The results of a random day (June 22/2019) at time 15:00 represented the exergy efficiency of 66.98 % and the round trip efficiency of 93.14 %. High exergy efficiency and round trip efficiency of this system make this idea applicable to enhancing the total performance of the entire system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.