Abstract

Cooperative diversity provides reliable communications between nodes in a network through relay nodes. In this paper, we introduce a new transmission protocol for relay fading channels. We examine the performance of the proposed protocol using both the amplify-and-forward (AF) and decode-and-forward (DF) modes. Our results prove that using this protocol, one can achieve full spatial diversity at full rate. We also show that our protocol with M relays is equivalent to a delay diversity scheme with M+1 transmit antennas. At the receiver side, a maximum likelihood sequence detector is used to recover the transmitted symbols. Comparing our protocol with existing ones, we noted large performance degradations in all protocols when the relay is operating in the DF mode where detection errors exist. This is different from the AF mode, where diversity is always maintained and only a SNR loss is incurred (relative to the ideal case of error-free relay transmission). This, in turn, suggests that even with the large cost/complexity involved in the DF mode, the ensuing performance may be poor compared to the AF mode. Motivated by this fact, we obtain a bit-error rate upper bound for a multi-relay configuration where all relay nodes operate in the AF mode. At high signal-to-noise ratio (SNRs), this error bound is shown to be tight when compared to simulation results

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.