Abstract

This paper aims to document and analyse performance of a new design of diffuse ceiling ventilation system in a typical office room. A full scale measurement is carried out in a climate chamber with an office setup at the Technical University of Denmark. Indoor air temperatures, air speeds, wall surface temperatures, pressure loss of the ceiling and ventilation effectiveness are measured for an air change rate of 3.5h−1 and 5.1h−1 respectively. A computational fluid dynamics model of the office with the diffuse ceiling ventilation system is built and validated by the full scale measurement. The measurements of pressure loss across the ceiling show a low pressure drop between the plenum and the occupied zone. Ventilation effectiveness is measured to be close to 1 on average under the tested conditions. It is shown that the diffuse ceiling ventilation system is able to remove indoor pollutant in an efficient way. The draught risk is found to be insignificant by both experimental and theoretical investigations. A design chart based on “flow element” method is created for the diffuse ceiling ventilation system by calculations with the validated CFD model. The design chart serves as a guideline for design and dimension of the investigated diffuse ceiling terminals as an air distribution system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call