Abstract

AbstractIn this paper, an analytical approach is presented to evaluate the bit error rate (BER) of a free space optical (FSO) link with radio frequency (RF) multiple subcarrier modulation, taking into account the effect of weak atmospheric turbulence considering a direct detection optical receiver followed by RF synchronous demodulator for each sub-channel. Analysis is carried out to find a closed-form expression for conditional BER at the output of the RF demodulators conditioned on a given value of atmospheric turbulence-induced fading and intermodulation distortion (IMD). The average BER for each sub-channel is then found by averaging the conditional BER over the probability density function of the atmospheric turbulence modeled as log-normal distribution. Degradations of BER due to atmospheric turbulence are evaluated for several values of system parameters like number of RF subcarrier, turbulence variance, link distance, data rate and power penalty suffered by the system due to atmospheric turbulence and IMD. For a given system bandwidth, it is found that the maximum power penalty occurs when the subcarrier number is around four and the performance gradually improves with increase in the number of subcarrier. For example, at a system bandwidth of 20 GHz with subcarrier number 4, the power penalty at a BER of 10–9 is found to be 30 dB for a link distance of 3.6 km, whereas the power penalty reduces to 13 dB when the number of subcarrier is increased to 32.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call