Abstract

Interleaved power converter topologies have received increasing attention in recent years for high performance applications. The advantages of coupled interleaved boost converters include increased efficiency, reduced size, reduced electromagnetic emission, faster transient response, and improved reliability. In this paper, a comprehensive performance analysis is presented for a multimode interleaved boost converter operating under the continuous conduction mode (CCM) and two discontinuous conduction modes (DCMs). With inductor coupling factor and converter loading as parameters, key performance indicators such as the dc voltage gain, input ripple current, inductor ripple current, and output ripple voltage are presented in a normalized form to aid the converter design process. Transitions among the CCM and two DCM modes are clearly defined as part of the analysis. Advantages of DCM operation such as reduced switching loss at the expense of undesired ringing are discussed. The analysis presented is experimentally verified using a 250 W, 70 kHz prototype converter unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call