Abstract

Zernike polynomials are generally used to predict the optical performance of a mirror. However, it can also be done by a numerical iterative method. As piston, tip, tilt, and defocus (P.T.T.F) aberrations can be easily removed by optical alignment, we iteratively used a rotation transformation and a paraboloid graph subtraction for removal of the aberrations from a raw deformation of the optical surface through a Finite Element Method (FEM). The results of a 30 cm concave circular mirror corrected by the iterative method were almost the same as those yielded by Zernike polynomial fitting, and the computational time was fast. In addition, a concave square mirror whose surface area is π was analyzed in order to visualize the deformation maps of a general mirror aperture shape. The iterative method can be applicable efficiently because it does not depend on the mirror aperture shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.