Abstract

In this study, a detailed modeling applicable for membrane dehumidifying system is proposed. This system contains a membrane module, 2-stage vacuum pumps, a condenser, and a regulating valve. The proposed model does not need any prior setting of the vacuum level of the permeate side, and the predictive results are in line with the benchmark. It is found that the COP (coefficient of performance) is 55% higher while the EF (energy factor) is almost 150% higher than the conventional one having the same dehumidifying capacity. For inlet with a fixed relative humidity, both COP and EF are increasd gradually when raising the inlet temperature. Yet the COP and EF reaches the peak values of 5.29 and 6.80 kg/kWh, respectively at a dry bulb temperature near 25.6 °C. Once surpassing this threshold temperature, a pronounced flip-over is seen for both COP and EF. The optimal COP can be obtained by simultaneously adjusting volumetric flowrate and condenser size rather than only adjusting each one individually.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.