Abstract

This chapter analyzes a steady-state finite buffer M/M/1 working vacation queue wherein the customers can balk or renege. Unlike the classical vacation queues, the server can still render service to customers during the working vacations, at a different rate rather than completely terminating the service. The inter-arrival times of customers follow exponential distribution. The arriving customers either decide not to join the queue (that is, balk) with a probability or leave the queue after joining without getting served due to impatience (that is, renege) according to negative exponential distribution. The service times during a regular busy period, service times during a working vacation period, and vacation times are all independent and exponentially distributed random variables. Using Markov process, the steady-state equations are set and the steady-state system length distributions at arbitrary epoch are derived using blocked matrix method. A cost model is formulated to determine the optimum service rate. Sensitivity analysis is carried out to investigate the impact of the system parameters on various performance indices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call